

Evolving OAM Requirements with IP-Based Tools

Monique J. Morrow,
CTO Consulting Engineer
mmorrow@cisco.com

- Align MPLS OAM Requirements with IP-based tool constructs
- Comparison of various mechanisms

- Why IP-Based Tools?
- Requirements
- LSP Ping
- BFD/VCCV
- OAM Message Mapping
- ITU-T/IETF Mechanism Overview
- Future Directions
- Summary

Why IP-Based Tools?

- MPLS is IP-based
- All MPLS control protocols are based on the IP protocol suite

LDP / BGP / RSVP / PIM

•Facilitate evolutionary implementation of such mechanisms in deployed networks

ATM OAM Does NOT Equal MPLS OAM

Cisco.com

Virtual Circuits

Label Switched Paths

Bi-directional	Usually Uni-directional
Established via ATM Signaling or Management	Establishment tied closely to control planes
Fixed hierarchy VP/VC	Variable Label Stack
Connection oriented	Can be "connectionless"
Single route	May use ECMP
No penultimate popping	Penultimate hop popping

Requirements

Requirements (1)

- Three categories of requirements gathered from 1st tier PWE/MPLS Service Providers (and others).
 - ✓ VC/LSP Path Verification and Tracing
 - ✓ Built-in Protocol Operations
 - ✓ Standard Management APIs/NMS Applications MIBs, CLI, XML, etc...
 - >Documented in:
 - ➤ draft-ietf-mpls-oam-requirements-01.txt
 - >Must be addressed *before* many providers will deploy PWE3 services.

- Control plane verification of information Consistency check Authentication
- Data Plane Verification
- Ability to trace paths from PE to PE Global routing table as well as VPNs
- Ability to trace paths from CE to CE within a VPN
- Ability to trace LSPs with ECMP
- Ability to Trace TE tunnels

LSP Ping

- Similar to ICMP (IP) Ping
 - **Sequence Number**
 - **Timestamps**
 - Sender Identification
- Full identification of FEC based the application
- Variable length for MTU discovery
- Support for tunnel/path tracing
- Multiple-reply modes
- Handles ECMP
- Reference

http://www.ietf.org/internet-drafts/draft-ietf-mpls-lsp-ping-03.txt

MPLS Ping: Operation

- Ping Mode: Connectivity check of an LSP
 Test if a particular "FEC" ends at the right egress LSR
- Traceroute Mode: Hop by Hop fault localization
- Uses two messages

MPLS Echo Request

MPLS Echo Reply

Packet need to follow data path

MPLS Ping Message Format

Cisco.com

Version Number Reply mode Return Code Sender's Handle _+_+_+_+ Sequence Number TimeStamp Sent (seconds) TimeStamp Sent (microseconds) TimeStamp Received (seconds) TimeStamp Received (microseconds) TLVs ...

Message Type

1 Echo Request2 Echo Reply

Reply Mode

No reply
IPv4 UDP packet
IPv4 UDP packet with
Router alert
Control Plane

TLVs include

FEC to be checked

Cisco.com

- Ping with label for FEC=192.169.10.0/24
- Label Switched at R2, R3
- R3 pops label off
- R4 processes packet

Packet Flow Ping Mode: Egress node

- Check Packet integrity
- Check if FEC distribution protocol is associated with incoming interface
- Check if valid egress node for the FEC
- Send echo Reply according to value of Reply Mode

MPLS Traceroute: Packet Flow

Cisco.com

- MPLS Ping Packets are sent with TTL=1,2,3
- Label switched if TTL > 1
- Processed where TTL expires

- Copy one Downstream Mapping (DM) TLV from Echo Reply
- Pick one IP Address from address in DM TLV
- Send a new Echo Request with TTL+1
- Repeat (if appropriated) for each DM TLV
- Reply from Egress stops iteration

Packet Flow Trace Mode: R1

TTL=1,2,3,4	Downstream Mapping TLV			
P IP Src: IP-R1; IP Dst: 127.x.y.z	0 1 2 3 4 5 6 7 8 9 0 1	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1		
TTL: 1	Down	Downstream IPv4 Router ID		
Router Alert	+-+-+-+-+-+-+-+-+-+- MTU	-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+		
JDP Dest Port: 3503	+-+-+-+-+-+-+-+-	+-		
Payload	Downstream Interface Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+			
Message Type=1	Hash Key Type Depth			
Reply Mode=2,	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-			
ReturnCode=0				
Sender Handle Sequence Number				
TimeStamp Sent	· · · · · · · · · · · · · · · · · · ·			
TLVs	Downstre	ream Label Protocol		
Target FEC stack Downstream mapping		-+		

Packet Flow Trace Mode: Transit Node

Reply processing same as Ping, then

 Check for Downstream Mapping TLV Determine nexthop routers

Add Downstream Mapping TLVs for each
 Compute label stacks, address/label ranges

Return received Label Stack if requested

Bidirectional Forwarding Detection/ Virtual Circuit Connection Verification

Bidirectional Forwarding Detection

Cisco.com

- Simple, fixed-field, hello protocol
- Nodes transmit BFD packets periodically over respective directions of a path
- If a node stops receiving BFD packets some component of the bidirectional path is assumed to have failed
- Several modes of operaton

VCCV uses Asynchronous mode

www.ietf.org/internet-drafts draft-katz-ward-bfd-01.txt

BFD Control Packet

Cisco.com

0	1	2		3
0 1 2 3 4 5 6	7 8 9 0 1 2 3 4	4 5 6 7 8 9 0 1	2 3 4 5 6	6 7 8 9 0 1
+-+-+-+-+-	-+-+-+-+-	+-+-+-+-+-	-+-+-+-	+-+-+-+-+
Vers Diag	H D P F Rsv	vd Detect Mu	ult	Length
+-+-+-+-+-	-+-+-+-+-+-	+-+-+-+-+-+-	-+-+-+-	+-+-+-+-+
	My Di	iscriminator		
+-+-+-+-+-	-+-+-+-+-	+-+-+-+-+-	-+-+-+-	+-+-+-+-+
	Your I	Discriminator		
+-+-+-+-+-	-+-+-+-	+-+-+-+-+-	-+-+-+-	+-+-+-+-+-+
	Desired	Min TX Interval	1	
+-+-+-+-+-	-+-+-+-+-+-	+-+-+-+-+-+-	-+-+-+-	+-+-+-+-+-+
	Required	Min RX Interval	1	
+-+-+-+-+-	-+-+-+-+-	+-+-+-+-+-+-	-+-+-+-	+-+-+-+-+
	Required Mi	in Echo RX Inter	rval	
+-+-+-+-+-	-+-+-+-+-+-+	+-+-+-+-+-+-	-+-+-+	+-+-+-+-+

Variable detection intervals

Cisco.com

- Each node estimates how quickly it can send and receive BFD packets
- Nodes exchange the follow parameters in every control packet

Desired Min TX Interval

Required Min RX Interval

Detect Multiplier

 These estimates can be modified in real time in order to adapt to unusual situations

Determining Detection Time

- TX Transmission Interval
- RX Receive Interval

Note that
$$TX(a->b) = RX(b->a)$$

- TX(a->b) = max(Desired Min TX(a), Required Min RX(b))
- TX(b->a) = max(Desired Min TX(a), Required Min RX(b))

Detection Time(b) = Detect Mult(a) x T(a->b)

TX is jittered by 25%

Diagnostics

- 0 -- No Diagnostic
- 1 -- Control Detection Time Expired (RDI)
- 2 -- Echo Function Failed (N/A to VCCV)
- 3 -- Neighbor Signaled Session Down (FDI)
- 4 -- Forwarding Plane Reset (Indicates local equipment failure)
- 5 -- Path Down (Alarm Suppression)
- 6 -- Concatenated Path Down (used to propagate access link alarms)
- 7 -- Administratively Down

Virtual Circuit Connection Verification (VCCV)

Cisco.com

- Multiple PSN Tunnel Types
 - MPLS, IPSEC, L2TP, GRE,...
- Motivation
 - •One tunnel can serve many pseudo-wires.
 - •MPLS LSP ping is sufficient to monitor the PSN tunnel (PE-PE connectivity), but not VCs inside of tunnel.
- www.ietf.org/internet-drafts/draft-ietf-pwe3-vccv-00.txt

- Mechanism for connectivity verification of PW
- Features

Works over MPLS or IP networks

In-band CV via control word flag or out-of-band option by inserting router alert label between tunnel and PW labels

Works with BFD, ICMP Ping and/or LSP ping

- VCCV results may drive OAM/LMI injection on corresponding AC(s)
- http://www.ietf.org/internet-drafts/draft-ietf-pwe3-vccv-00.txt

In Band VCCV Format

Cisco.com

Control word use is signalled in LDP - Standard form:

OAM uses a different 1st nibble

PWE3 OAM Example: Continuity Verification

Cisco.com

BFD provides a lightweight means of regular periodic CV

PWE3 OAM Example: Connection Verification

- Verify/Trace Path of LSP Tunnels between PEs.
- •Verify/Trace Emulated services (e.g. ATM, FR) mapped to Attachment VCs
- Trace/Verify packets must take same path as data packets.

Example of Operation CV/Trace Using VCCV and LSP Ping

OAM Message Mapping

OAM Message Mapping

- Provides details of how LSP ping/VCCV failures should translate into native ATM/FR OAM messages that PEs return to the native attachment interfaces.
- OAM Emulation
 - AIS and RDI Generation for ATM AAL5 over MPLS
 - AIS/RDI Generation for ATM upon reception of label withdrawal and vice versa
- LMI/ILMI based status notification upon label withdrawal reception for pseudowire virtual circuits
- draft-nadeau-pwe-msg-mapping-01.txt

OAM Message Mapping Example

Cisco.com FR **ATM** CPE **CPE** FR **ATM** UNI UNI **FR CPE ATM CPE** ATM FR IP/MPLS FR ATM FR **ATM** UNI UNI/NNI UNI/NNI UNI FR PVC MPLS PSN ATM PVC MPLS PING, F5/F4 end-to-end AOM cells Q.933 Q.933 Q.933 Traceroute messages messages messages F5/F4 segment OAM cells Interworking Q.933 **Interworking AOM cells AIS** RDI CC Loopback (I.620) Loopback

ITU-T/IETF Mechanism Overview

Addressing OAM Requirements Two Basic Approaches

Cisco.com			
	ITU	IETF	
Requirements	Y.1710	draft-ietf-mpls-oam-requirements-01.txt	
Detection			
MPLS	Y.1711 (a.k.a. CV)	BFD, LSR Self Test	
L3			
L2			
Diagnostic			
MPLS	FEC-CV (Y.17feccv), (Y.17fw)	MPLS Ping/Trace	
L3	FEC-CV (Y.17feccv),	MPLS Ping/Trace	
L2	FEC-CV (Y.17feccv), Y.17fw	VCCV, OAM state mapping	
Instrumentation	(Y.17fw)	MIB, Syslog	
Recovery	Y.1720, (Y.17fw)	FRR, MPLS HA, Graceful restart	
Performance	Y.MPLSperf		
Security			

- Does not work for Penultimate hop popping, which is very commonly used.
- Assumes a fixed path/connection-oriented view of the world as in G.709 which is more the exception than the norm.
- Requirement for a reverse path
 - This is the exception rather than the rule for most MPLS applications
- Fixed interval between CV Packets of 1 second.
 - Will not scale for typical networks comprised of large numbers of LDP signaled LSPs.

Y.1711 in a Nutshell

- Y.1711 will not scale for auto-routed LDP networks which comprise about %90 of deployed MPLS networks!
- Revolutionary approach requiring re-spin of many pieces of hardware.

- IP-based Tools approach added to y.17fw.
- Y.17fw to be consented, Feb 2004

Will leverage existing IP-based tools to overcome many aforementioned shortcomings.

Will integrate new tools (LSP ping/trace, VCCV) into tool box of existing operator management tools.

Evolutionary not revolutionary approach!

Future Directions

Future Directions

Bidirectional Forwarding Detection (BFD)

"Bidirectional Forwarding Detection", IETF draft-katz-ward-bfd-01.txt

"BFD for IPv4 and IPv6 (Single Hop)", IETF draft-katz-ward-bfd-v4v6-1hop-00.txt

Working on Ethernet OAM mechanisms (IEEE)

Interworking OAM is pivotal for converged services

Summary

Summary

- Most current applications offer an IP related service
- IP is the basis of MPLS control planes
- Most important, customer requirements highlight need for IP-based tool mechanisms
- Therefore, IP-based tools makes sense and provides natural evolution of MPLS OAM to current and future services!

References

References (2)

- > draft-ietf-mpls-oam-requirements-01.txt
- draft-ietf-pwe3-vccv-00.txt
- draft-nadeau-pwe-msg-mapping-01.txt
- draft-swallow-mpls-lsr-self-test-00.txt
- draft-katz-ward-bfd-01.txt
- draft-katz-ward-bfd-v4v6-1hop-00.txt
- Guest Editor Special Edition IEEE Communications Magazine on topic of OAM for MPLS-Based Networks
- Scheduled Publication, October 2004
- Call For Papers:

http://www.comsoc.org/pubs/commag/cfpcommag1004.htm