MPLS Japan 2012 (Talk: 10min)

ProgrammableFlow

SDN meets MPLS - OpenFlow/SDNの本質的な価値とは?

2012年10月15日 日本電気株式会社 岩田 淳

E-mail: a-iwata@ah.jp.nec.com

Outline

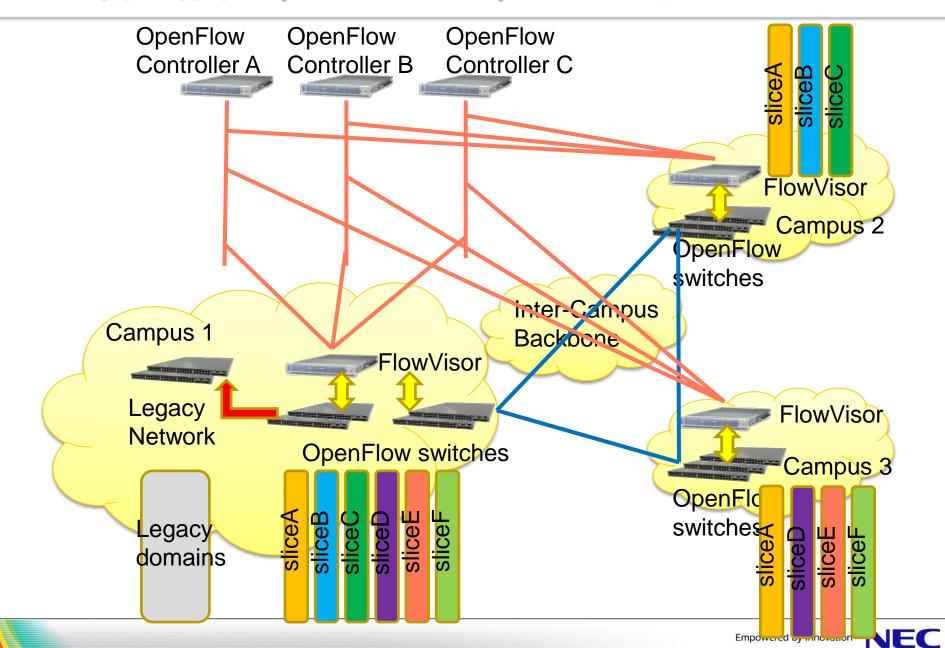
- 1. OpenFlowとの出会い
- 2. OpenFlow/SDNと既存技術との共通点と相違点
- 3. OpenFlow/SDNの本質的価値とは?

OpenFlowとの出会い

OpenFlowとの出会い

- 2006年: Stanford Nick Mckeownとの打ち合わせで、 Future Internetへ向けた共同研究プログラム (Clean Slate Program) の打診 & 共同研究加入。
 - 数多くの研究テーマの中に OpenFlow/SDN関係のテーマ (OpenFlow, Ethane, NetFPGA) あり。
- OpenFlowの第一印象: "Scaleしないじゃん・Single Point of Failureだよね!"
 - Centralized control
 - Flow switching
 - など、過去 IP switching (like Ipsilon) のScalabilityの問題について議論。

OpenFlowとの出会い #2


- OpenFlowの本質かもしれない事象・アプローチと出会い
 - Open Programmable Interface (Not CLI)
 - コントローラ上の新ネットワーク制御ソフトウエア生産性
 - コントローラ上のアプリケーションを書くことによるネットワーク制御のイノベーション
 - Merchant Siliconを活用した実装の容易性(wire-rate performanceとFlexibilityの両立)
 - =>これらの事象からOpenFlowの可能性を発見
 - =>Scalability/Single Point of Failureなどは技術で解決できるものと判断し、上記特徴を重視。
- 2007年: Stanford大学 Clean Slate Program
 - OpenFlow/SDN研究に注目&スタート、OpenFlow仕様検討、トライアル・実証(w/ベンダ、キャリア)

OpenFlowとの出会い #3

- 2008年: Stanford大学 Clean Slate Laboratory活動開始
 - OpenFlow Consortiumでの OpenFlow spec (v0.8.9, v1.0),
 Trial活動
 - http://www.openflow.org
 - 研究者派遣 & 密連携
 - Stanford/GeorgiaTech/Rutgers/BBN/Internet2/GENI@USA,
 OFELIA@Europe, JGN-X@NICTと共同での商用Trial推進
 - => これらのTrialを通して、さまざまなネットワークのユースケース に対して、柔軟にOpenFlowにより対応することを実証。
 - => Centralized / Flow Switchingという表面的な機能を超えた ネットワークのProgrammabilityというパラダイムを実感。
- 2009-2011年:
 - ProgrammableFlow 商用製品開発&世界初商用化@2011.3

Trial例: 北米 OpenFlow Campus Trial @ GENI #2

OpenFlow/SDNと 既存技術との共通点と相違点

既存技術との共通点と相違点 #1 (Data plane)

		OpenFlow /SDN	TRILL/SPB Fabric	MPLS
Data plane	Switching	Flow Switch(L1-L4)	L2 tunneling	Label Switch
	Flow 動作	Reactive/ Proactive		Topology-Driven (Proactive)
	Fabric 制御 (N to 1 仮想 化)	OpenFlow Fabric (multi path, waypoint, maintenance routing)	L2 Fabric (L2 multi-path)	
	Slicing(1 to N 仮想化)	L1– L4 sliced network	L2 overlay	MPLS VPN (L2, L3)
	OAM	今後規定 (Ether OAM/MPLS OAM等)		MPLS-OAM
	Protection Switching	今後規定 (OAM活用)		ITU-T Protection Switching
	Multicast	Optimized multicast (any fashion)		MPLS Multicast

既存技術との共通点と相違点 #2 (Control plane)

		OpenFlow /SDN	TRILL/SPB Fabric	MPLS
Control plane	Control 動作	Logically centralized	Distributed	Distributed
	Program i/f (Northboun d API)	Programmable interface (CLI, RestAPI, C, C++, Python, Java, Ruby)	CLI	CLI
	Topology Discovery	Topology Discovery	TRILL/SPBベース	OSPF, BGP ベース
	Traffic Engineering	Logically centralized path computation & optimizatoin		Distributed TE & optimization
	Traffic monitoring	Flow-based accounting(byte/pack et#)		MIB
	協調動作/自動化制御	他のシステムとの協調 動作 (OSS/BSS)との Orchestration		

COPYRIGHT © 2012 NEC CORPORATION All RIGHTS Reserved.

OpenFlow/SDNの本質的価値とは?

OpenFlowが変えるネットワーク産業構造

ネットワークのオープン化はネットワーク産業を大きく進化させる

【前コンピュータ構造】 (垂直統合型)

> クローズ アーキテクチャ

アプリケー ション ソフトウェア

専用OS

ハードウェア (メインフレーム)

メインフレーム、 オフコン時代 【現コンピュータ構造】 (アンバンドル型)

> オープン アーキテクチャ

アプリケー ション ソフトウェア

OS

ハードウェア (PC.サーバ)

オープンシステム によりIT利用が 急速に進展 」【ネットワーク産業構造】 └ (垂直統合型構造)

> クローズ アーキテクチャ

制御部 組み込み ソフトウェア

専用組み込み OS

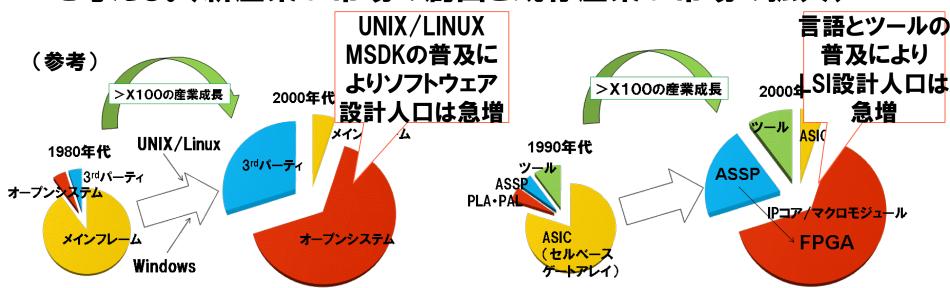
スイッチ・ルータ ハードウェア

ネットワーク機能 はベンダ依存。 ユーザ制御不可 【新ネットワーク産業構造】 (アンバンドル型)

> オープン アーキテクチャ

多様・豊富な ネットワーク ソフトウェア群

オープンな インタフェース (OS)


ハードウェア (オープンフロー ネットワーク)

オープンシステムにより プログラマビリティが向 上し産業革新を加速

NEC

OpenFlow/SDNのOpen化による社会の変革

- OpenFlow/SDNはネットワーク設計、運用(管理制御)、サービスをオープン化するコンセプト。(情報通信産業のゲームチェンジを起こす) => ネットワーク事業のIT化の動き。
- ネットワーク産業のオープン化は情報処理産業にも革新的な影響 を与える。(新産業&市場の創出と既存産業&市場の拡大)

オープン化によるコンピュータ(ソフトウェア)産業の変革 UNIX/Linux/Windowsはコンピュータ産業を爆発的に 拡大させた。AndroidもPC/端末産業を変革しつつある。 システムLSIのソフトウェアプログラマビリティとオーブンな開発環境の整備がPLA(→FPGA)産業を爆発的に拡大させ、システムASIC市場を爆発的に拡大させた。