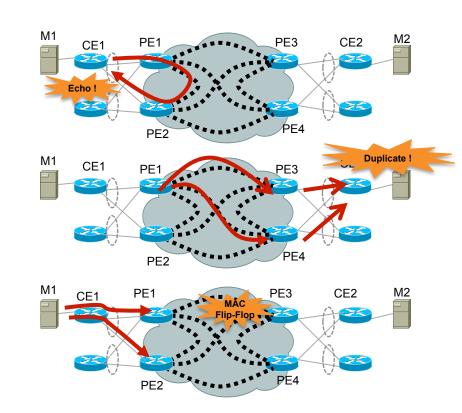


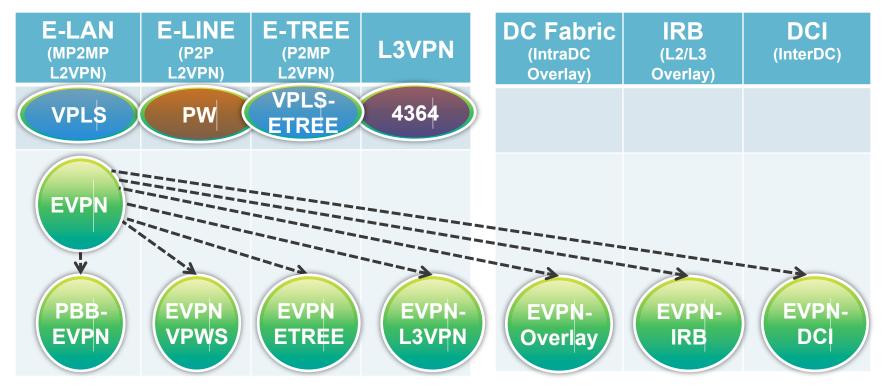
Ali Sajassi

Distinguished Engineer, Cisco System


MPLS Japan 2015, Nov 9

EVPN History

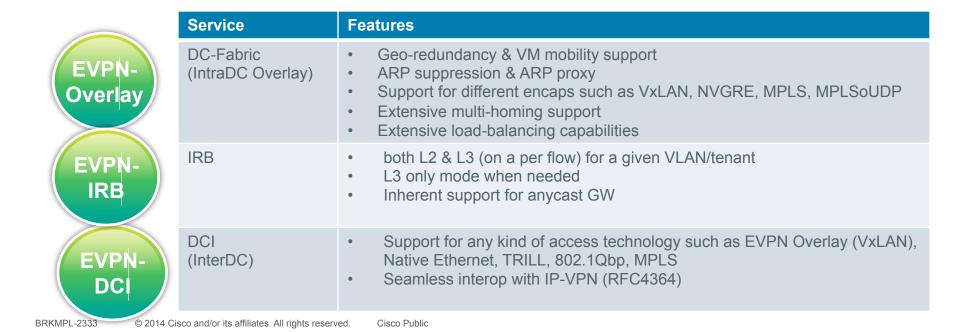
2006 2008 2010 2012 2014/2015 Following drafts were Following drafts were introduced Enhancements Started the project OPEN at Introduced to IETF as introduced: **EVPN IRB** Virtual ES Cisco Routed-VPLS **EVPN EVPN DCI** Optimized ingress replication OPEN = Optimum Ethernet - IPBB-EVPN IGMP aggregation between Merged with Juniper's MAC-VPN and was **EVPN-VPWS** PODs Network mcast tunnels between DCs introduced an EVPN **EVPN-Overlay EVPN-ETREÉ** Inter-AS for IRB L3VPN multi-homing


Challenges with Legacy VPN (VPLS)

- Next generation VPN solution need to have
 - Extensive multi-homing capabilities
 - Per-flow load-balancing in the core and access with DF election and loop prevention
 - Fast convergence upon failure
- Existing VPLS solutions do not offer an All-Active per-flow redundancy
- Looping of Traffic Flooded from PE
- Duplicate Frames from Floods from the Core
- MAC Flip-Flopping over Pseudowire
 - E.g. Port-Channel Load-Balancing does not produce a consistent hash-value for a frame with the same source MAC (e.g. non MAC based Hash-Schemes)

What is EVPN?

EVPN is next generation all-in-one VPN solution

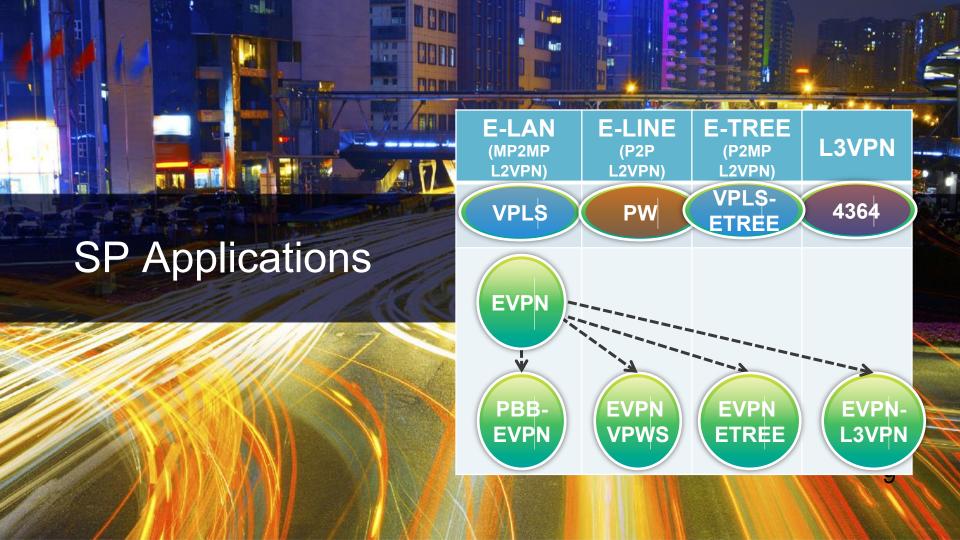

What's the big deal?

Not only a single technology/solution does the job of many existing solutions but it does it better!

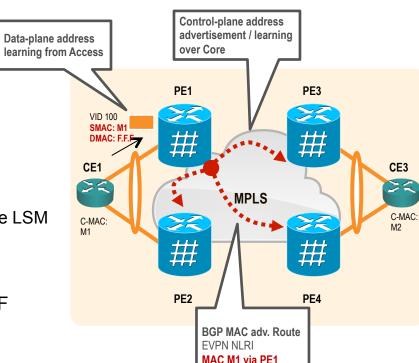
Service	Additio	onal Capabilities
PBB- EVPN	• Pr	ovides All-Active multi-homing events loop for both all-active & single-active even in transient state oility to do per-flow LB & DF
EVPN VPWS	• Di	oth single-segment & multi-segment support scovery & signaling via single protocol – BGP l-active & single-active redundancy support
EVPN ETREE	• In	gress filtering for traffic destined to egress leaf sites

What's the big deal ? – Cont.

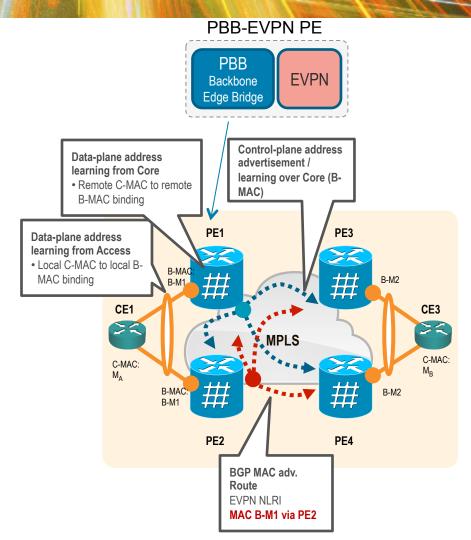

New Applications & Solutions



SDO Status


SDO Status – Cont.

EVPN - Highlights


- Next generation solution for Ethernet multipoint (E-LAN) services
- PEs run Multi-Protocol BGP to advertise & learn Customer MAC addresses (C-MACs) over Core
 - Same operational principles of L3VPN
- Learning on PE Access Circuits via data-plane transparent learning
- No pseudowire full-mesh required
 - Unicast: use MP2P tunnels
 - Multicast: use ingress replication over MP2P tunnels or use LSM
- **Provides**
 - Extensive multi-homing capabilities
 - Per-flow load-balancing in the core and access with DF election and loop prevention
 - Fast convergence upon failure
- Multievendor Solution ### RF G: 75432 Cisco Public

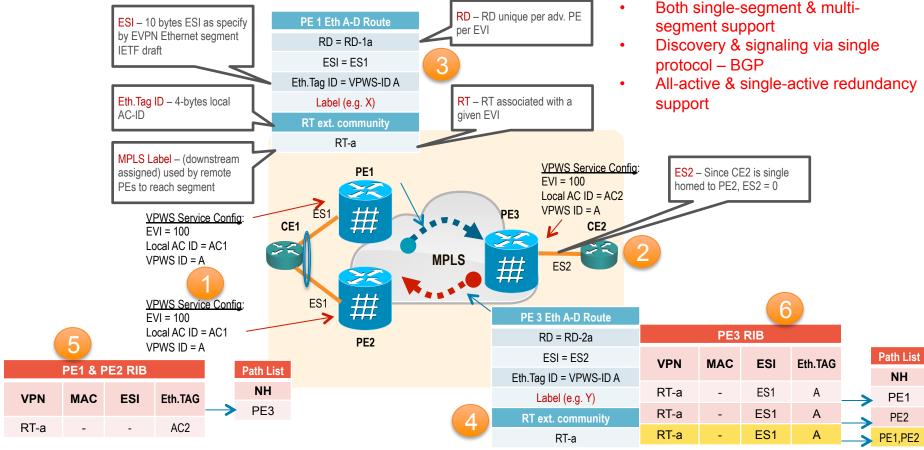
PBB -EVPN

Highlights

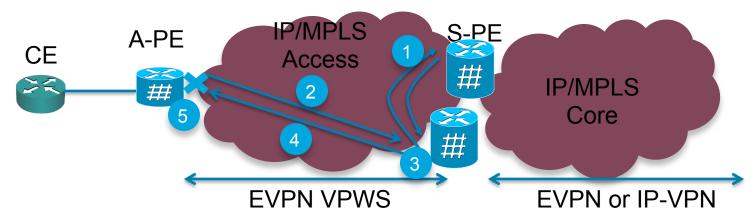
- Next generation solution for Ethernet multipoint (E-LAN) services by combining Provider Backbone Bridging (PBB - IEEE 802.1ah) and Ethernet VPN
- Data-plane learning of local C-MACs and remote C-MAC to B-MAC binding
- PEs run Multi-Protocol BGP to advertise local Backbone MAC addresses (B-MACs) & learn remote B-MACs
 - Takes advantage of PBB encapsulation to simplify BGP control plane operation faster convergence
 - Lowers BGP resource usage (CPU, memory) on deployed infrastructure (PEs and RRs)
 - Scales for very large number of MACs
- Multi-vendor solution RFC 7623

When to use PBB-EVPN?

- For SP & DCI applications where E2E L2 services needed
- Lower control-plane overhead than EVPN alone
 - PBB-EVPN uses only a sub-set of EVPN routes
 - Simpler and Faster failure convergence for allactive multi-homing scenarios
 - Faster MAC move convergence handled in data-plane
- Lower control-plane scale requirements than EVPN alone
 - BGP MAC advertisements for smaller Backbone MAC (B-MAC) address space
 - Requires less resources (CPU, memory) on deployed infrastructure (PEs / RRs)

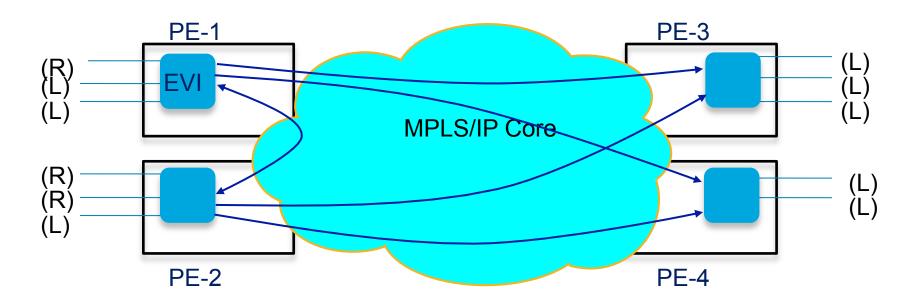

Comparison of L2VPN Solutions

Requirement		PBB-VPLS	EVPN	PBB-EVPN		
Multi-Homing with All-Active Forwarding						
Service Based Load-balancing CE-to-PE		V	V	~		
Flow Based Load-balancing CE-to-PE		\Diamond	✓	✓		
Flow Based Load-balancing PE-to-PE		0	✓	✓		
Flow Based Multi-Pathing in the Core		✓	✓	✓		
Provisioning Simplicity						
Core Auto-Discovery		✓	✓	✓		
Access Auto-Sensing		0	✓	✓		
Redundancy Group Auto-Discovery		0	✓	✓		
Automatic Designated Forwarder election and Service Carving		0	✓	✓		
Service Interfaces						
Port-Based / VLAN-based / VLAN Bundling		✓	V	~		
VLAN-aware Bundling		0	✓	✓		
Multi-Destination Traffic Forwarding						
Ingress Replication		✓	✓	✓		
LSM with P2MP Tree		✓	✓	✓		
LSM with MP2MP Tree		0	✓	✓		

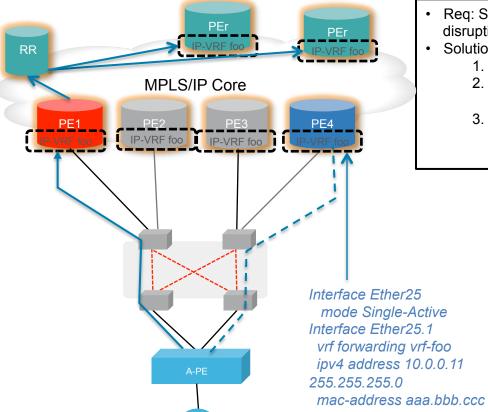

Comparison of L2VPN Solutions (cont.)

Requirement		PBB-VPLS	EVPN	PBB-EVPN		
Fast Convergence						
CE-PE Link Failures / PE Node Failures		✓	✓	✓		
MAC Mobility		✓	✓	✓		
CE-PE Link Failures with Local Repair		0	✓	✓		
MAC Scalability						
Scale to Millions of C-MAC Addresses		✓	0	✓		
Confinement of C-MAC entries to PE with active flows		✓	\Diamond	✓		
MAC Summarization		0	✓	✓		
MAC Summarization co-existence with C-MAC Mobility		0	0	✓		
Flexible VPN Policies						
Per C-MAC Forwarding Control Policies		0	✓	0		
Per-Segment Forwarding Control Policies		\otimes	✓	✓		

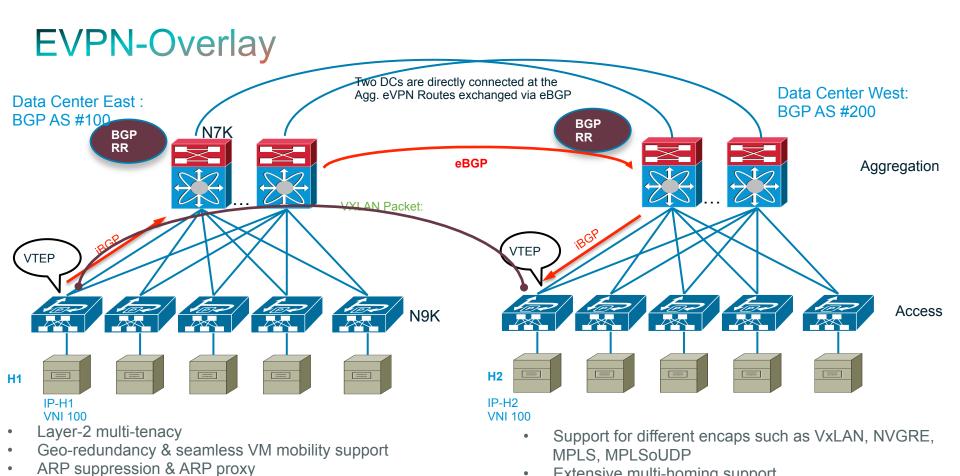
EVPN VPWS: All-Active Operation



EVPN-VPWS: Service Edge GW

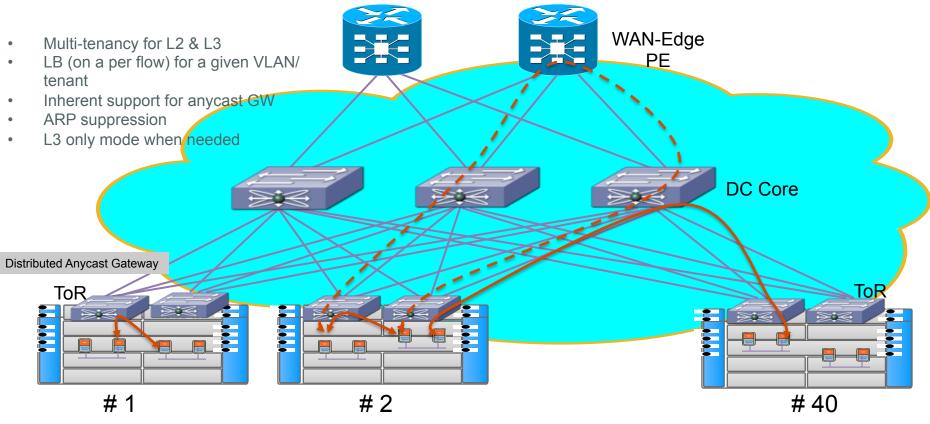

- 1. Discovery among S-PEs per EVPN/IP-VPN service needing VPWS
- 2. Origination of single-side signaling by an A-PE for a given VPWS service (identified by the 24-bit Ethernet tag)
- 3. DF election by S-PEs for Active/Backup
- 4. Active & Backup S-PEs responding to the single-sided signaling of step (2)
- 5. Binding of two halves of the EVC (or IPVC) by the A-PE upon receiving the response in step (3) & setting up backup EVC

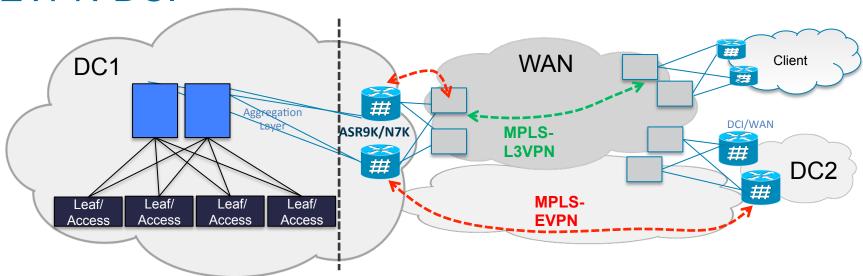
EVPN-ETREE


EVPN-ETREE provides ingress filtering for traffic destined to egress leaf sites!!

EVPN-L3VPN

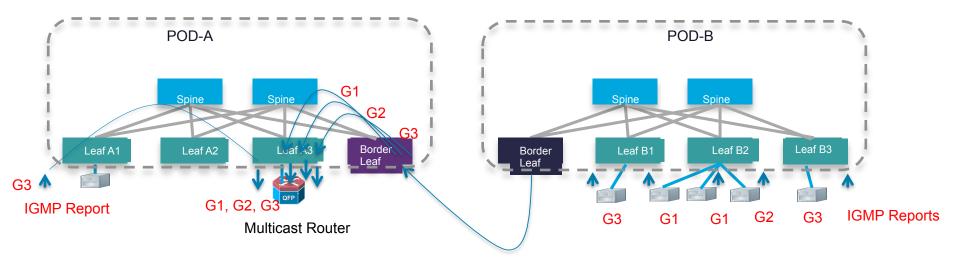
- Req: Single-BGP session from CPE with fast switchover and min. traffic disruption during failure
- Solution has three components:
 - 1. PIC functionality for fast switchover at PEr devices
 - 2. Synch up of ARP cache and VRF tables on all PEs in the redundancy group
 - 3. BGP GR with non-stop forwarding between CPE and PEs in the redundancy group




- Support large scale VMs & policy control
- BRKMPL-2333
 - © 2014 Cisco and/or its affiliates. All rights reserved.
- Cisco Public

- Extensive multi-homing support
 - Extensive load-balancing capabilities

EVPN-IRB



- Seamless interop with IP-VPN (RFC4364)
- Support for any kind of access technology such as EVPN
 Overlay (VxLAN), Native Ethernet, TRILL, 802.1Qbp, MPLS

BRKMP1-2333

IGMP/MLD Proxy

BGP EVPN selective multicast Route:

G1, G2, G3

